Big Data infrastructure: What matters and what to expect?

SISC HPC Team, ULB/VUB Michaël WAUMANS

Shared ICT Services Center, ULB - M. Waumans 2019

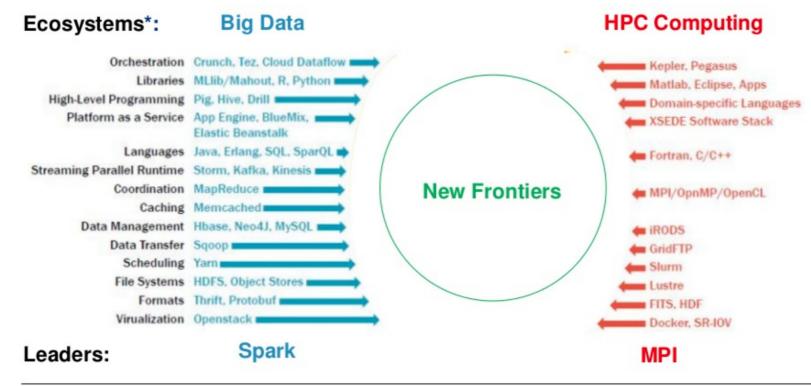
What matters ?

Shared ICT Services Center, ULB – M. Waumans 2019

BigData @ CÉCI : the missing link

• CÉCI offers :

- MPI, HTC, GPUs and high-memory environments
- not a BigData one
- 2018 BigData survey @ CÉCI revealed a demand :
 - 95,3% of the participants wanted "BigData" Softwares
 - Hardware : mostly GPU & Memory
 - Software:
 - Hadoop (HDFS, Yarn, HBase), Spark, Solr, ELK, Cassandra, Hive, Impala and more
 - Plus ~any library that can be downloaded & always at the latest version


BigData @ CÉCI : the missing link

 In the 2nd round of CÉCI clusters renewal, Vega2 was targeted as a BigData & HTC offering

- Mission : Build up experience at management and usage levels
- **Means :** Test different configurations and interact with researchers to identify bottlenecks

BigData + HPC = High Performance Data Analysis

- Remember the speech of Damien Francois ?
 - **Closing a gap between Big Data and HPC computing**

*Geoffrey Fox et al. HPC-ABDC High Performance Computing Enhanced Apache Big Data Stack, CCGrid, 2015

From BigData to HPDA

• BigData was developed for :

- A time when IB and 10+ Gbps networks were too expensive for large scale systems.
- Taking easily advantage of very heterogeneous hardware configurations (Cores, Memory and Storage)
- Bringing the computation to the data to avoid network traffic

• Since then :

- High speed network became cheaper
- Emergence of cloud solutions
- New/more advanced distributed filesystems
- Increasing "BigData" software diversity

From BigData to HPDA: SISC Experiment

Objectives

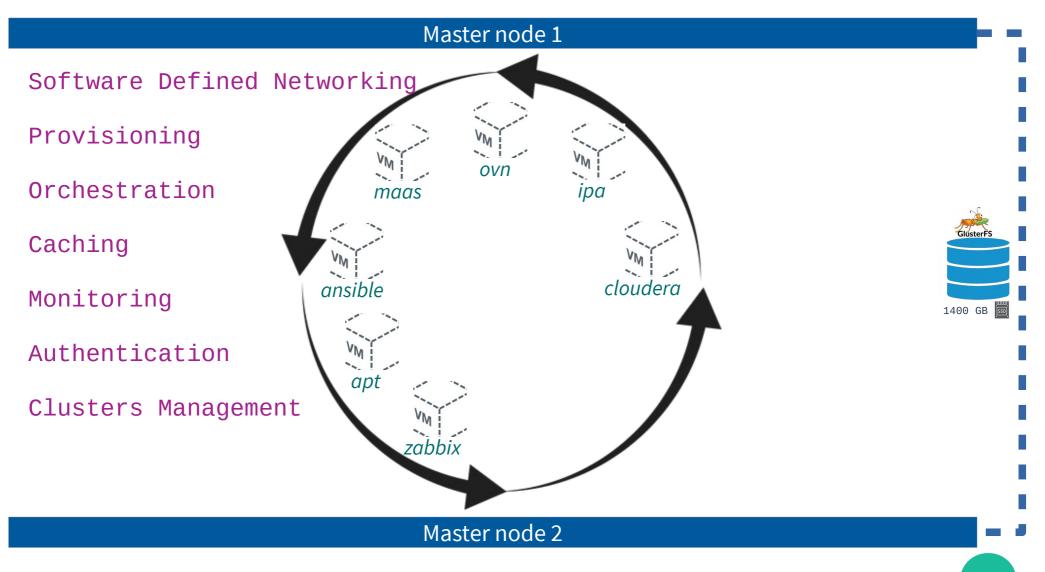
- Combine some HPC & BigData tech in a single platform
- Design and build a platform from 2nd hand hardware
- Target flexibility to accommodate the diversity of the "BigData" ecosystem
- Evaluate OpenSource distributed filesystems suitable for a HPDA cluster
- Evaluate OpenSource deployment solutions for maximum automation
- Place **security as a top priority** in decision processes

From BigData to HPDA: the SISC Experiment

Numerous solutions were tested, discarded or kept...

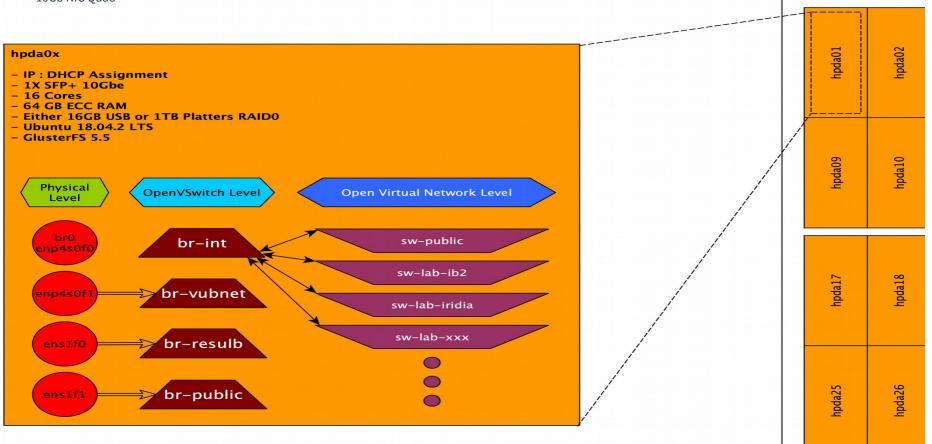
- Full Hadoop Cluster (Cloudera, HortonWorks,...)
- Full Hadoop Cluster + Kerberos (idem)
- Provisioning systems (MAAS, Foreman,...)
- Virtualisation Tools (Ovirt, OpenNebula, MAAS,...)
- Storage (CEPH, ZFS, GlusterFS, combinations,...)
- Other softwares (ELK + Shield \rightarrow Xpack \rightarrow SearchGuard, Cassandra + DSE, MongoDB, Cassandra, HyperTable,...)
- Other softwares non strictly "BigData" (Galera, MySQL Cluster, Cockroach, Reddis,...)
- Notebooks & Web Interfaces (Hue, Jupyter, Zeppelin,...)

What we've learned (i.e. what matters, so far)


· Proprietary hardware is a nightmare

- Limits everywhere...
- Favour an Open Compute Project approach.
- OpenSource software can be painful
 - But commercial solutions are very expensive and reduce flexibility. Support can be disappointing too.
 - Local expertise with OpenSource software is a definitive major asset
- · Scheduling is hard, estimating properly its own resources needs too as a user
 - Evaluating properly the resources required for a job can be hard on HPC/HTC. It's way worse in BigData.
 - Our choice : Instead of adding the complexity of BigData scheduling to HPC/HTC, let's try to move it to VM scheduling only
- Two categories of users (Those who need sercurity (GDPR and so on, and those who don't)
 - Security is not a developer's concern
 - Unless you pay licenses, provided it offers true security.
 - Our choice : Secure the environment, not the software (Hadoop, ELK, Cassandra,...)
- Three main "user needs"
 - Oriented towards the DATA (Permanent storage neither filesystem or object storage I.E.: ZOT)
 - Oriented towards the ALGORITHMS (Use of Spark, Storm and such paradigms)
 - Oriented towards BENCHMARK or EXPLORATION (On demand with full control on the services configuration)
 - Our choice : Answer all those requests through a single platform
- Use a virtualisation/cloud platform, not bare metal
 - Generic BigData compute nodes = impossible (Too many possible combinations...)
 - Redeploying nodes on-demand = complex and slow (idem)
 - OpenSource cloud = OpenStack = too complex and too big (Full Cloud)
 - Our choice : MAAS + Ansible + OVN + FreeIPA = isolated virtual secured clusters (Cloud... Kind of)

What to expect?


Shared ICT Services Center, ULB – M. Waumans 2019

A try at HPDA : Management


A try at HPDA : Hypervisors

- Hypervisor base on HP BL465c G7
 - 512 Cores Opteron 62xx [16 Each]
 - 2048GB DDR3 ECC [64GB Each]
 - 32GB USB / 1TB RAID0
 - 10Gb NIC Quad

A try at HPDA : Storage

- Storage node based on HP SL4540 G8
 - 192 Cores @ 2.3Ghz [16 Each]
 - 1152GB ECC RAM [96GB Each]
 - 660TB RAW [60TB Each]
 - 500GB RAID1
 - 10G NIC Single

350 TB NET

Shared ICT Services Center, ULB - M. Waumans 2019

What to expect ? Right now ?

3 Virtual clusters fully loaded with :

- HDFS, Hbase, Yarn, ZooKeeper, Hive, Impala, Solr, ELK, Cassandra, Hue, Zeppelin, JupyterHub, Kafka, and more...
- IBS IB² laboratory (80TB)
- IRIDIA laboratory (80TB)
- PUBLIC cluster for ULB/VUB Course that is open to CECI users for testing (80TB)

Let's be clear.

- Infrastructure in its early stage !
 - Accounts are local and are provided on demand only
 - Interested ? Contact us at hpc@ulb.ac.be
 - Please provide use your feedback, we need it :-)
- Experimental stuff !
 - Infrastructure built from recycled hardware :
 - NO 24/7 uptime warranty
 - NO data warranty either, keep copies
 - NO optimized compilation whatsoever
 - Limited storage and compute capacity
 - All is "best effort"
 - Opportunities to test BigData workflows .
 - Any library may be installed from repo fast

What to expect tomorrow?

- HPC and BigData convergence: still a long way to go.
 - (Any) BigData jobs scheduling in HPDA will require significant time and efforts investments.
 - Software deployment: in SysAdmin hands and will be step-by-step automated.
 - HPC offloading to HPDA: possible.
- Infrastructure: needs to be ambitious.
 - 10, 40 or more Gbps network, or Infiniband. Like HPC.
 - A lot of memory: OS level + virtualisation level + software level + caches = 128 512 GB per node. More than HPC.
 - Mixture of CPU and GPU cores per node. Convergence with HPC but without GPGPUs.
 - Favour continuous investments vs one big purchase every 4-6 years, i.e. more flexibility .

Questions ?

Shared ICT Services Center, ULB – M. Waumans 2019