
 1

 Introduction to
Scripting Languages

damien.francois@uclouvain.be
October 2017

 2

Goal of this session:

“Advocate the use of scripting languages and
help you choose the most suitable for your needs”

 3

Agenda

1. Interpreters vs compilers

2. Octave, R, Python

3. GUIs & Literate programming

4. Packages/Libraries/Modules

5. When it is too slow

6. Bridges

 4

Interpreters vs Compilers

● A compiler reads the whole code and produces a
separate binary file that can be executed by the CPU.

C/C++, Fortran, Java, Go, Haskel, ...
● An interpreter reads each line of code and executes it by

calling the corresponding functionalities in its own code.

Bash, Python, PHP, Javascript, Ruby, ...

 5

Interpreters vs Compilers

● The ugly truth...

– Many interpreters will pre-compile the code

– Some compilers compile not to CPU-specific machine
instructions but to bytecode

– The bytecode interpreters sometimes re-compile the
bytecode just before execution (JIT compiling)

– Interpreters exist for C and C++

– Compilers exist for Python

– The interpreter can be compiled or himself interpreted

 6

Interpreters vs Compilers

Compilers

– can apply code-wise powerful optimization

– practically have no run-time overhead

→ Speed

Interpreters

– allow easy code introspection

– offer high-level language constructs and tools

→ Ease of use

 7

Interpreted languages

● Easier to learn

– Many implementation details hidden

– Can try and test code portions rapidly and easily

● Easier to exchange/reuse

– The scripts are cross-platform by design

– Often built-in package management

● Faster development

– More convenient programming and shorter programs

● Offers many simplifications and shortcuts – no need to micromanage memory
● Built-in support for mundane tasks (handle files, dates, plots, Nas, NANs, etc.)

– Easier to debug and profile

● GUI

 8

Ex.1: argument parsing in Fortran

https://docs.python.org/3/library/argparse.html

 9

Ex.1: argument parsing in Fortran

 10

Ex.1: argument parsing in Fortran

 11

Ex.1: argument parsing in Python

https://docs.python.org/3/library/argparse.html

 12

Ex.2: Use XLS file in C

 13

Ex.2: Use XLS file in R

https://cran.r-project.org/web/packages/gdata/

 14

Ex.3: default args in Java

 15

Ex.3: default args in Octave

https://www.gnu.org/software/octave/doc/interpreter/Default-Arguments.html

 16

1.

Why those three?

 17

Why those three?

● All very much used in scientific applications

R (S/SPlus): strong for statistics

Octave (Matlab): strong for engineering

Python Scipy/Numpy (Canopy,Anaconda): strong for data science

● All free and free.

● Fun fact: All started as wrappers for Fortran code!

 18

Why those three?

S was designed by John Chambers (Bell Lags) as an
interactive interface to a Fortran-callable library, ca 1976.

MATLAB was built by Cleve Moler (University of New Mexico) to
give students access to LINPACK and EISPACK without them
having to learn Fortran

Python Numpy (Travis Oliphant, Brigham Young University)
originates from f2py, a tool to easily extend Python with Fortran
code.

 19

Why those three?

Octave: Fortran optimized routines made easy to use. Easily
handle (multi-dimensional) matrices, Nans, Infs, no need
to worry about memory allocation, etc.

R: Easily handle matrices, strings, dates, and categories and
missing values

Python: Full programming language, can handle custom
objects

 20

Why those three?

By contrast,

Ruby, Perl: smaller bioinformatics-only community

Javascript, PHP, Bash, TCL, Lua: totally different goal

Matlab, IDL, Mathematica: not free

Julia: very young – good luck to get help when needed

 21

Why those three?

By contrast,

Ruby, Perl: smaller bioinformatics-only community

Javascript, PHP, Bash, TCL, Lua: totally different goal

Matlab, IDL, Mathematica: not free

Julia: very young – good luck to get help when needed

Not true anymore.
Worth considering !

(but not yet in this session...)

 22

2.

TripleQuickstart

 23

Operators and assignment

http://sebastianraschka.com/Articles/2014_matrix_cheatsheet_table.html

 24

Building arrays/matrices

http://sebastianraschka.com/Articles/2014_matrix_cheatsheet_table.html

 25

Indexing/slicing

http://sebastianraschka.com/Articles/2014_matrix_cheatsheet_table.html

 26

Searching arrays/matrices

http://mathesaurus.sourceforge.net/matlab-python-xref.pdf

 27

Control structures

http://mathesaurus.sourceforge.net/matlab-python-xref.pdf

 28

Linear regression

http://mathesaurus.sourceforge.net/matlab-python-xref.pdf

 29

Linear regression

http://mathesaurus.sourceforge.net/matlab-python-xref.pdf

Fortran
C

 30

So..

http://mathesaurus.sourceforge.net/matlab-python-xref.pdf

Fast to learn
Fast to code

 31

Challenge.. Write 'sapin.[m|R|py]'

 32

Challenge.. Write 'sapin.[m|R|py]'

 33

Help

You will need for-loops, if-conditionals, variable assignment, and printing
which you can find in the slides

Other resources:
https://en.wikibooks.org/wiki/Octave_Programming_Tutorial/Getting_started

https://cran.r-project.org/doc/manuals/R-intro.html
http://wiki.scipy.org/Tentative_NumPy_Tutorial

http://stackoverflow.com/questions/14395569/how-to-output-text-in-the-r-console-without-creating-new-lines

http://stackoverflow.com/questions/493386/how-to-print-in-python-without-newline-or-space

http://stackoverflow.com/questions/1012597/displaying-information-from-matlab-without-a-line-feed

 34

If you are that quick... Try this:

 35

Possible solution (C)

 36

Possible solution (C, cont'd)

 37

Possible solution (Octave)

 38

Possible solution (R)

 39

Possible solution (Python)

 40

Second challenge

 41

Second challenge

● Find for which value of 'parameter' is 'result' the lowest.

● Course of action:

– Read all files and parse them (you might need to install
additional packages/libraries/modules)

– Build two arrays one of parameter values and the other
one for result values

– Remove problematic values (plotting might help here)

– Find minimum

 42

Possible solution

- https://nl.mathworks.com/matlabcentral/fileexchange/17177-ini2struct
- https://cran.r-project.org/web/packages/ini/index.html
- https://docs.python.org/3/library/configparser.html

 43

Second challenge

 44

3.

Graphical User Interfaces
Editing, debugging, accessing the doc, made easy

Literate programming
Authoring dynamic documents with code in them

 45

Octave

 46

Rstudio

 47

Spyder

 48

3.

Graphical User Interfaces
Editing, debugging, accessing the doc, made easy

Literate programming
Authoring HTML or LaTeX documents

with code and results in them

 49

RMarkdown and KnitR

 50

Jupyter notebooks

 51

Shiny

 52

Dash

 53

4.

Extensions
Packages – Libraries – Modules

 54

Octave Forge

 55

CRAN

 56

PyPI

 57

5. General tips when it is slow

● Program thoughtfully:

– Use vectorized functions

– Avoid loops

– Preallocate

– Force type

– Avoid copy-on-write
● Link to fast libraries (C/C++, Fortran, Java)

● Write low-level parts in C or Fortran

● Compile – jit

● Go parallel

 58

6. Bridges

Python → R http://rpython.r-forge.r-project.org/

Octave → Python https://pypi.python.org/pypi/oct2py

R → Python http://rpy.sourceforge.net/

Octave → R https://cran.r-project.org/web/packages/RcppOctave

Python → Octave https://github.com/daniel-e/pyoctave

R → Octave http://www.omegahat.org/ROctave/

 59

Summary

Octave, R, Python (and Julia)

Much more programmer-friendly than C/C++/Fortran

Still able to use fast compiled code

Focus on the unsolved problems

Try all and choose one

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

